
 1

Report on results of Discriminant Analysis experiment.
11 March 2002

Norman F. Schneidewind, Fellow, IEEE

Naval Postgraduate School
Monterey, CA 93943, USA

Voice: (831) 656-2719
Fax : (831) 372-0445

nschneid@nps.navy.mil

Summary

This is Report #1 in a series of reports on the NASA IV&V Facility Project ”Investigation of
the Risk to Software Reliability and Maintainability of Requirements Changes”. This report
covers the discriminate analysis experiment. In order to continue to make progress in software
measurement, as it pertains to reliability and maintainability, we must shift the emphasis from
design and code metrics to metrics that characterize the risk of making requirements changes.
Although these software attributes can be difficult to deal with due to the fuzzy requirements
from which they are derived, the advantage of have early indicators of future software problems
outweighs this inconvenience. We developed an approach for identifying requirements change
risk factors as predictors of reliability and maintainability problems. Our case example consists
of twenty-four Space Shuttle change requests, nineteen risk factors, and the associated failures
and software metrics. The approach can be generalized to other NASA domains with numerical
results that would vary according to the application.

This report is organized as follows: 1. Introduction, 2. Objectives, 3. Research Plan, 4.

Related Research, 5. Risk Factors, 6. Results, 7. Conclusions, and References.

1. Introduction

While software design and code metrics have enjoyed some success as predictors of software
quality attributes such as reliability [5, 6, 7, 8, 11, 13, 14], the measurement field is stuck at this
level of achievement. If measurement is to advance to a higher level, we must shift our attention
to the front-end of the development process, because it is during system conceptualization that
errors in specifying requirements are inserted into the process and adversely affect our ability to
maintain the software. A requirements change may induce ambiguity and uncertainty in the
development process that cause errors in implementing the changes. Subsequently, these errors
propagate through later phases of development and maintenance. These errors may result in
significant risks associated with implementing the requirements. For example, reliability risk
(i.e., risk of faults and failures induced by changes in requirements) may be incurred by
deficiencies in the process (e.g., lack of precision in requirements). Although requirements may
be specified correctly in terms of meeting user expectations, there could be significant risks
associated with their implementation. For example, correctly implementing user requirements
could lead to excessive system size and complexity with adverse effects on reliability and
maintainability or there could be a demand for project resources that exceeds the available funds,
time, and personnel skills. Interestingly, there has been considerable discussion of project risk

 2

(e.g., the consequences of cost overrun and schedule slippage) in the literature [1] but not a
corresponding attention to reliability and maintainability risk.

Risk in the Webster's New Universal Unabridged Dictionary is defined as "the chance of

injury; damage, or loss" [21]. Some authors have extended the dictionary definition as follows:
"Risk Exposure=Probability of an Unsatisfactory Outcome*Loss if the Outcome is
Unsatisfactory" [1]. Such a definition is frequently applied to the risks in managing software
projects such as budget and schedule slippage. In contrast, our application of the dictionary
definition pertains to the risk of executing the software of a system where there is the chance of
injury (e.g., crew injury or fatality), damage (e.g., destruction of the vehicle), or loss (e.g., loss of
the mission) if a serious software failure occurs during a mission. We use risk factors to indicate
the degree of risk associated with such an occurrence.

The generation of requirements is not a one-time activity. Indeed, changes to requirements

can occur during maintenance. When new software is developed or existing software is changed
in response to new and changed requirements, respectively, there is the potential to incur
reliability and maintainability risks. Therefore, in assessing the effects of requirements on
reliability and maintainability, we should deal with changes in requirements throughout the life
cycle.

In addition to the relationship between requirements and reliability and maintainability there

are the intermediate relationships between requirements and software metrics (e.g., size,
complexity) and between metrics and reliability and maintainability. These relationships may
interact to put the reliability and maintainability of the software at risk because the requirements
changes may result in increases in the size and complexity of the software that may adversely
affect reliability and maintainability. We studied these interactions for the Space Shuttle. For
example, assume that the number of iterations of a requirements change -- the "mod level" -- is
inversely related to reliability. That is, if many revisions of a requirement are necessary before it
is approved, this is indicative of a requirement that is hard to understand and implement safely --
a risk that directly impacts reliability. At the same time, this complex requirement will affect the
size and complexity of the code that will, in turn, have deleterious effects on reliability and
maintainability.

2. Objectives

Our overall objective was to identify the attributes of software requirements that cause the

software to be unreliable. Furthermore, we seek to quantify the relationship between
requirements risk and reliability. If these attributes can be identified, then policies can be
recommended to the software engineering community for recognizing these risks and avoiding or
mitigating them during development. The objective of these policy changes is to prevent the
propagation of high-risk requirements through the various phases of software development.

Given the lack of emphasis in measurement research on the critical role of requirements, we

investigated the following issues:

 3

 - What is the relationship between requirements attributes and reliability and maintainability?
That is, are there requirements attributes that are strongly related to the occurrence of defects and
failures in the software?

- What is the relationship between requirements attributes and software attributes like complexity
and size? That is, are there requirements attributes that are strongly related to the complexity and
size of software?

- Is it feasible to use requirements attributes as predictors of reliability and maintainability? That
is, can static requirements change attributes like the size of the change be used to predict
reliability in execution (e.g., failure occurrence) and the maintainability of this code?

- Which requirements attributes pose the greatest risk to reliability and maintainability?

3. Research Plan

Our research was aimed at conducting experiments to see whether it is feasible to develop a

mapping between changes in requirements to changes in software complexity and reliability. In
other words, we investigated whether the following implications hold, where R represents
requirements, C represents complexity, and F represents failure occurrence (i.e., reliability):
�R��C��F. We include changes in size and documentation in changes in complexity. This
approach proved successful using the Shuttle requirements risk factors, complexity metrics, and
failure data. The results indicate that when this approach is applied to the Space Shuttle that the
number of faults inserted into the software is reduced. There is no reason to believe that this
approach would not be successful if and when comparable data from other NASA projects
become available. We were able to judge whether our approach was a success by the statistical
significance of the results, as will be explained.

By retrospectively analyzing the relationship between requirements and reliability, we were

able to construct models that can predict reliability as a function of requirements changes. In
order to quantify the effect of a requirements change, we used various risk factors that are
defined as the attribute of a requirement change that can induce reliability or project risk.
Various examples of risk factors are shown in the section Risk Factors. We statistically analyzed
specified risk factors to see in what way, if any, they were associated with reliability. In
particular, we wanted to identify those factors that have an adverse effect on reliability.

4. Related Research

A number of useful related reliability and maintenance measurement projects have been

reported in the literature. Much of the research and literature in software metrics concerns the
measurement of code characteristics [10, 12]. This is satisfactory for evaluating product quality
and process effectiveness once the code is written. However, if organizations use measurement
plans that are limited to measuring code, these plans will be deficient in the following ways:
incomplete, lack coverage (e.g., no requirements analysis and design), and start too late in the
process. For a measurement plan to be effective, it must start with requirements and continue
through to operation and maintenance. Since requirements characteristics directly affect code

 4

characteristics and hence reliability and maintainability, it is important to assess their impact
when requirements are specified.

Briand, et al, developed a process to characterize software maintenance projects [2]. They

present a qualitative and inductive methodology for performing objective project
characterizations to identify maintenance problems and needs. This methodology aids in
determining causal links between maintenance problems and flaws in the maintenance
organization and process. Although the authors have related ineffective maintenance practices to
organizational and process problems, they have not made a linkage to risk assessment.

Pearse and Oman applied a maintenance metrics index to measure the maintainability of C

source code before and after maintenance activities [15]. This technique allowed the project
engineers to track the "health" of the code as it was being maintained. Maintainability is assessed
but not in terms of risk assessment.

Pigoski and Nelson collected and analyzed metrics on size, trouble reports, change proposals,

staffing, and trouble report and change proposal completion times [17]. A major benefit of this
project was the use of trends to identify the relationship between the productivity of the
maintenance organization and staffing levels. Although productivity was addressed, risk
assessment was not considered.

Sneed reengineered a client maintenance process to conform to the ANSI/IEEE Standard

1219, Standard for Software Maintenance [19]. This project is a good example of how a standard
can provide a basic framework for a process and can be tailored to the characteristics of the
project environment. Although applying a standard is an appropriate element of a good process,
risk assessment was not addressed.

Stark collected and analyzed metrics in the categories of customer satisfaction, cost, and

schedule with the objective of focusing management's attention on improvement areas and
tracking improvements over time [20]. This approach aided management in deciding whether to
include changes in the current release, with possible schedule slippage, or include the changes in
the next release. However, the author did not relate these metrics to risk assessment.

An indication of the back seat that software risk assessment takes to hardware, Fragola

reports on probabilistic risk management for the Space Shuttle. Interestingly, he says: “The
shuttle risk is embodied in the performance of its hardware, the careful preparation activities that
its ground support staff take between flights to ensure this performance during a flight, and the
procedural and management constraints in place to control their activities.” [4]. There is not a
word in this statement or in his article about software! Another hardware-only risk assessment is
by Maggio, who says: “The current effort is the first integrated quantitative assessment of the
risk of the loss of the shuttle vehicle from 3 seconds prior to liftoff to wheel-stop at mission
end.” Again, there was not a word about software [9].

Pfleeger lays out a roadmap for assessing project risk that includes risk prioritization [16], a

step that we address with the degree of confidence in the statistical analysis of risk (see Results
section).

 5

4. Research Approach

By retrospectively analyzing the relationship between requirements and reliability and

maintainability, we were able to identify those risk factors that are associated with reliability and
maintainability and we were able to prioritize them based on the degree to which the relationship
was statistically significant. In order to quantify the effect of a requirements change, we use
various risk factors that are defined as the attribute of a requirement change that can induce
adverse effects on reliability (e.g., failure incidence), maintainability (e.g., size and complexity
of the code), and project management (e.g. personnel resources).

Table 1 shows the Change Request Hierarchy of the Space Shuttle, involving change requests

(i.e., a request for a new requirement or modification of an existing requirement), discrepancy
reports (i.e., reports that document deviations between specified and observed software
behavior), and failures. We analyzed categories 1 versus 2.1 and 1 versus 2.2.3 with respect to
risk factors as discriminants of the categories.

Table 1: Change Request Hierarchy
Change Requests (CRs)
 1. No Discrepancy Reports (i.e., CRs with no DRs)
 2. Discrepancy Reports
 2.1 No failures (i.e., CRs with DRs only)
 2.2 Failures
 2.2.1 Pre-release failures
 2.2.2 Post-release failures
 2.2.3 Exclusive OR of 2.2.1 and 2.2.2 (i.e., CRs with failures)

4.1 Discriminant Analysis

Using the null hypothesis, Ho: A risk factor is not a discriminator of reliability and

maintainability versus the alternate hypothesis H1: A risk factor is a discriminator of reliability
and maintainability, we used categorical data analysis to test the hypothesis. A similar hypothesis
was used to assess whether risk factors can serve as discriminators of metrics characteristics. We
used the requirements, requirements risk factors, reliability, and metrics data we have from the
Space Shuttle “Three Engine Out” software (abort sequence invoked when three engines are lost)
to test our hypotheses. Samples of these data are shown below.

- Pre-release and post release failure data from the Space Shuttle from 1983 to the present.

An example of post-release failure data is shown in Table 2.

Table 2
Failure Found On

 Operational Increment
Days from Release

When Failure Occurred
Discrepancy

Report #
Severity Failure Date Release Date Module in

Error
Q 75 1 2 05-19-97 03-05-97 10

 6

Risk factors for the Space Shuttle Three Engine Out Auto Contingency software. This software
was released to NASA by the developer on 10/18/95. An example of a partial set of risk factor
data is shown in Table 3.

Table 3

Change
Request
Number

SLOC
Changed

Complexity
Rating of
Change

Criticality
of Change

Number of
Principal
Functions
Affected

Number of
Modifications

Of Change
Request

Number of
Requirements

Issues

Number of
Inspections
Required

Manpower
Required to

Make
Change

A 1933 4 3 27 7 238 12 209.3 MW

- Metrics data for 1400 Space Shuttle modules, each with 26 metrics. An example of a partial set
of metric data is shown in Table 4. The table values are the counts per module.

Table 4

Module Operator
Count

(unique
operators)

Operand
Count
(unique

operands)

Statement
Count

(executable
statements)

Path
Count

(paths from
input node
to terminal

node in
control
graph)

Cycle
Count

(iterations
in control

graph)

Discrepancy
Report Count

(deviations
between specified

and observed
software behavior)

Change
Request Count
(requirements

change requests)

10 3895 1957 606 998 4 14 16

Table 5 shows the definition of the Change Request samples that were used in the analysis.
Sample sizes are small due to the high reliability of the Space Shuttle. However, sample size is
one of the parameters accounted for in the statistical tests that produced significant results in
certain cases (see Results section). Note: CRs can have multiple instances of DRs, failures, and
modules that caused failures. This is why “12”, “9”, and “7” do not add to “24”.

Table 5: Definition of Samples

Sample Size
Total CRs 24
CRs with no DRs 12
CRs with DRs only 9
CRs with failures 7
CRs with modules that
caused failures

6

CR: Change Request. DR: Discrepancy
Report.

To minimize the confounding effects of a large number of variables that interact in some cases, a
statistical categorical data analysis was performed incrementally. We used only one category of
risk factor at a time to observe the effect of adding an additional risk factor on the ability to
correctly classify change requests that have discrepancy reports (i.e., a report that documents

 7

deviations between specified and observed software behavior) or failures and those that do not.
The Mann-Whitney test for difference in medians between categories was used because no
assumption need be made about statistical distribution; in addition, some risk factors are ordinal
scale quantities (e.g., modification level). Furthermore, because some risk factors are ordinal
scale quantities, rank correlation was used to check for risk factor dependencies.

5. Risk Factors

One of the software maintenance problems of the NASA Space Shuttle Flight Software
organization is to evaluate the risk of implementing requirements changes. These changes can
affect the reliability and maintainability of the software. To assess the risk of change, the
software development contractor uses a number of risk factors, which are described below. The
risk factors were identified by agreement between NASA and the development contractor based
on assumptions about the risk involved in making changes to the software. This formal process is
called a risk assessment. No requirements change is approved by the change control board
without an accompanying risk assessment. During risk assessment, the development contractor
will attempt to answer such questions as: “Is this change highly complex relative to other
software changes that have been made on the Space Shuttle?” If this were the case, a high-risk
value would be assigned for the complexity criterion. To date this qualitative risk assessment has
proven useful for identifying possible risky requirements changes or conversely, providing
assurance that there are no unacceptable risks in making a change. However, there has been no
quantitative evaluation to determine whether, for example, high risk factor software was really
less reliable and maintainable than low risk factor software. In addition, there is no model for
predicting the reliability and maintainability of the software, if the change is implemented. Our
research addressed both of these issues.

We had considered using requirements attributes like completeness, consistency, correctness,

etc. as risk factors [3]. While these are useful generic concepts, they are difficult to quantify.
Although some of the following risk factors also have qualitative values assigned, there are a
number of quantitative risk factors, and many of the risk factors deal with the execution behavior
of the software (i.e., reliability), which is our research interest.

5. 1 Space Shuttle Flight Software Requirements Change Risk Factors

The following are the definitions of the nineteen risk factors, where we have placed the risk
factors into categories and have provided our interpretation of the question the risk factor is
designed to answer. If the answer to a yes/no question is "yes", it means this is a high-risk
change with respect to the given risk factor. If the answer to a question that requires an estimate
is an anomalous value, it means this is a high-risk change with respect to the given risk factor.

For each risk factor, it is indicated whether there is a statistically significant relationship

between it and reliability and maintainability for the software version analyzed. The details of
the findings are shown in the Results section. In many instances, there was insufficient data to do
the analysis because in these cases the risk factor evaluation forms were incomplete. These cases
are indicated below. The names of the risk factors used in the analysis are given in quotation
marks.

 8

Complexity Factors

o Qualitative assessment of complexity of change (e.g., very complex); “complexity”. Not
significant.

- Is this change highly complex relative to other software changes that have been made on the
Space Shuttle?

o Number of modifications or iterations on the proposed change; “mods”. Significant.

- How many times must the change be modified or presented to the Change Control Board
(CCB) before it is approved?

Size Factors

o Number of lines of code affected by the change; “sloc”. Significant.

- How many lines of code must be changed to implement the change request?

o Number of modules changed; “mod chg”. Not significant.

 - Is the number of changes to modules excessive?

Criticality of Change Factors

 o Criticality of function added or changed by the change request; “crit func” (insufficient data)

- Is the added or changed functionality critical to mission success?

o Whether the software change is on a nominal or off-nominal program path (i.e., exception
condition); “off nom path”. (insufficient data)

- Will a change to an off-nominal program path affect the reliability of the software?

Locality of Change Factors

o The area of the program affected (i.e., critical area such as code for a mission abort sequence);
“critic area” (insufficient data)

- Will the change affect an area of the code that is critical to mission success?

o Recent changes to the code in the area affected by the requirements change; “recent chgs”
(insufficient data)

- Will successive changes to the code in one area lead to non-maintainable code?

 9

o New or existing code that is affected; “new\exist code” (insufficient data)

- Will a change to new code (i.e., a change on top of a change) lead to non-maintainable code?

o Number of system or hardware failures that would have to occur before the code that
implements the requirement would be executed; “fails ex code” (insufficient data)

- Will the change be on a path where only a small number of system or hardware failures would
have to occur before the changed code is executed ?

Requirements Issues and Functions Factors

o Number and types of other requirements affected by the given requirement change
(requirements issues); “other chgs” (insufficient data)

- Are there other requirements that are going to be affected by this change? If so, these
requirements will have to be resolved before implementing the given requirement.

o Number of possible conflicts among requirements (requirements issues); “issues”
Significant.

- Will this change conflict with other requirements changes (e.g., lead to conflicting operational
scenarios)

o Number of principal software functions affected by the change; “prin funcs” Not
significant.

- How many major software functions will have to be changed to make the given change?

Performance Factors

o Amount of memory space required to implement the change; “space” Significant.

- Will the change use memory to the extent that other functions will not have sufficient memory
to operate effectively?

o Effect on CPU performance; “cpu” (insufficient data)

- Will the change use CPU cycles to the extent that other functions will not have sufficient CPU
capacity to operate effectively?

Personnel Resources Factors

o Number of inspections required to approve the change; “inspects” Not significant.

 10

- Will the number of requirements inspections lead to excessive use of personnel resources?

o Manpower required to implement the change; “manpower” Not significant.

- Will the manpower required to implement the software change be significant?

o Manpower required to verify and validate the correctness of the change; “cost” Not
significant.

- Will the manpower required to verify and validate the software change be significant?

o Number of tests required to verify and validate the correctness of the change; “tests” Not
significant.

- Will the number of tests required to verify and validate the software change be significant?

6. Results

This section contains the results of performing the following statistical analyses shown in
Tables 6. 7, and 8, respectively. Only those risk factors where there was sufficient data and the
results were statistically significant, as indicated in the Risk Factors section, are shown. Some
quantitative risk factors (e.g., size of change) are statistically significant; no non-quantitative risk
factors (e.g., complexity) are significant.

a. Categorical data analysis on the relationship between CRs with no DRs vs. CRs with failures,
using the Mann-Whitney Test; and categorical data analysis on the relationship between CRs
with no DRs vs. CRs with DRs only, using the Mann-Whitney Test

b. Dependency check on risk factors, using rank correlation coefficients; and

c. Identification of modules that caused failures as a result of the CR, and their metric values.

6. 1 Categorical Data Analysis
Of the original nineteen risk factors, only four survived as being statistically significant

(alpha � .05); seven were not significant; and eight had insufficient data to make the analysis
(see the Risk Factors section). As Table 6 shows, there are statistically significant results for CRs
with no DRs vs. CRs with failures for the risk factors “mods”, “sloc”, “issues”, and “space”.
There are also statistically significant results for CRs with no DRs vs. CRs with DRs only for the
risk factors “issues” and “space”. Since the value of alpha represents the accuracy of a risk factor
in predicting reliability, we use it in Table 6 as a means to prioritize the use of risk factors, with
low values meaning high priority. The priority order is: “space”, “issues”, “mods”, and “sloc”.

The significant risk factors would be used to predict reliability and maintainability problems
for this set of data and this version of the software. Whether these results would hold for future
versions of the software would be determined in validation tests in future research. The finding
regarding “mods” does confirm the software developer’s view that this is an important risk

 11

factor. This is the case because if there are many iterations of the change request, it implies that it
is complex and difficult to understand. Therefore, the change is likely to lead to reliability and
maintainability problems. It is not surprising that the size of the change “sloc” is significant
because our previous studies of Space Shuttle metrics have shown it to be important [18].
Conflicting requirements “issues” could result in reliability and maintainability problems when
the change is implemented. The on-board computer memory required to implement the change
“space” is critical to reliability because unlike commercial systems, the Space Shuttle does not
have the luxury of large physical memory, virtual memory, and disk memory to hold its
programs and data. Any increased requirement on its small memory to implement a change
comes at the price of demands from competing functions.

Table 6: Statistically Significant Results (alpha � .05). CRs with no DRs vs.
CRs. with failures. Mann-Whitney Test

Risk Factor

Alpha Median Value
CRs with no DRs

Median Value

CRs with failures
mods .0168 .50 4

sloc .0185 10 100

issues .0038 2 16

space .0036 4 231.5

CRs with no DRs vs. CRs with DRs only.

Risk Factor

Alpha Median Value

CRs with no DRs
Median Value
CRs with DRs

only
issues .0386 2 14

space .0318 4 111.50

mods: Number of modifications of the proposed change.
sloc: Number of lines of code affected by the change.
issues: Number of possible conflicts among requirements.
space: Amount of memory space required to implement the change (full words).

6.2 Dependency Check on Risk Factors

 In order to check for possible dependencies among risk factors that could confound the
results, rank correlation coefficients were computed in Table 7. Using an arbitrary threshold of
.7, the results indicate significant dependencies between “issues” and “mod” and between
“issues” and “sloc” for CRs with no DRs. That is, as the number of conflicting requirements
increases, the number of modifications and size of the change request increases. In addition,
there is a significant dependency between “space” and “issues” for CRs with failures. That is, as
the number of conflicting requirements increases, the memory space required to implement the
change request increases.

 12

Table 7: Rank Correlation Coefficients of Risk Factors

 CRs with no DRs
 mods sloc issues space

mods .230 .791 .401
sloc .230 .708 .317

issues .791 .708 .195
space .401 .317 .195

CRs with failures
 mods sloc issues space

mods .543 -.150 .378
sloc .543 .286 .452

issues -.150 .286 .886
space .378 .452 .886

6.3 Identification of Modules that Caused Failures

 Requirements change requests may occur on modules with metric values that exceed the
critical values. In these cases, there is significant risk in making the change because such
modules could fail. Table 8 shows modules that caused failures, as the result of the CRs, had
metric values that far exceed the critical values. The latter were computed in previous research
[18]. A critical value is a discriminant that distinguishes high quality from low quality software.
A module with metric values exceeding the critical values is predicted to cause failures.
Although the sample sizes are small, due to the high reliability of the Space Shuttle, the results
consistently show that modules with excessive size and complexity lead to failures. Not only will
the reliability be low but this software will also be difficult to maintain. The application of this
information is that there is a high degree of risk when changes are made to software that has the
metric characteristics shown in the table. Thus, these characteristics should be considered when
making the risk analysis.

Table 8: Selected Risk Factor Module Characteristics
Change
Request

Module Metric Metric Critical
Value Metric Value

A 1 change history line count in
module listing

63 558

A 2 non-commented lines of code
count

29 408

B 3 executable statement count 27 419
C 4 unique operand count 45 83
D 5 unique operator count 9 33
E 6 node count (in control graph) 17 66

All of the above metrics exceeded the critical values for all of the above Change Requests.

7. Conclusions

Risk factors that are statistically significant can be used to make decisions about the risk of

making changes. These changes affect the reliability and maintainability of the software. Risk
factors that are not statistically significant should not be used; they do not provide useful
information for decision-making and cost money and time to collect and process. The amount of
memory space required to implement the change (“space”), the number of requirements issues

 13

(“issues”), the number of modifications (“mods”), and the size of the change (“sloc”), were
found to be significant, in that priority order. In view of the dependencies among these risk
factors, “space” would be the choice if the using organization could only afford a single risk
factor. We also showed how risk factor thresholds are determined for controlling the quality of
the next version of the software.

Statistically significant results were found for CRs with no DRs vs. CRs with failures; in
addition, statistically significant results were found for CRs with no DRs vs. CRs with DRs only.

Metric characteristics of modules should be considered when making the risk analysis

because metric values that exceed the critical values are likely to result in unreliable and non-
maintainable software.

Our methodology can be generalized to other risk assessment domains, but the specific risk
factors, their numerical values, and statistical results may vary. Future research will involve
applying the methodology to the next version of the Space Shuttle software and identifying the
statistically significant risk factors and thresholds to see whether they match the ones identified
in this research.

References

[1] Barry W. Boehm, "Software Risk Management: Principles and Practices", IEEE Software,
Vol. 8, No. 1, January 1991, pp. 32-41.

[2] Lionel C. Briand, Victor R. Basili, and Yong-Mi Kim, "Change Analysis Process to
Characterize Software Maintenance Projects", Proceedings of the International Conference on
Software Maintenance, Victoria, British Columbia, Canada, September 19-23, 1994, pp. 38-49.

[3] Alan Davis, Software Requirements: Analysis and Specifications, Prentice-Hall, Englewood
Cliffs, NJ, 1990.

[4] Joseph R. Fragola, “Space Shuttle Program Risk Management”, Proceedings Annual
Reliability and Maintainability Symposium, 1996, pp. 133-142.

[5] Taghi M. Khoshgoftaar and Edward B. Allen, "Predicting the Order of Fault-Fault-Prone
Modules in Legacy Software", Proceedings of the Ninth International Symposium on Software
Reliability Engineering, November 4-7, 1998, Paderborn, Germany, pp. 344-353.

[6] Taghi M. Khoshgoftaar, Edward B. Allen, Robert Halstead, and Gary P. Trio, "Detection of
Fault-Prone Software Modules During a Spiral Life Cycle", Proceedings of the International
Conference on Software Maintenance, November 4-8, 1996, Monterey, California, pp. 69-76.

[7] Taghi M. Khoshgoftaar, Edward B. Allen, Kalai Kalaichelvan, and Nishith Goel, "Early
Quality Prediction: A Case Study in Telecommunications", IEEE Software, Vol. 13, No. 1,
January 1996, pp. 65-71.

 14

[8] D. Lanning and T. Khoshgoftaar, "The Impact of Software Enhancement on Software
Reliability", IEEE Transactions on Reliability, Vol. 44, No. 4, December 1995, pp. 677-682.

[9] Gaspare Maggio, “Space Shuttle Probabilistic Risk Assessment Methodology and
Application”, Proceedings Annual Reliability and Maintainability Symposium, 1996, pp. 121-
132.

[10] Sebastian G. Elbaum and John C. Munson, "Getting a Handle on the Fault Injection
Process: Validation of Measurement Tools", Proceedings of the Fifth International Software
Metrics Symposium, November 20-21, 1998, Bethesda, Maryland, pp. 133-141.

[11] John C. Munson and Darrell S. Werries, "Measuring Software Evolution", Proceedings of
the Third International Software Metrics Symposium, March 25-26, 1996, Berlin, Germany, pp.
41-51.

[12] Allen P. Nikora, Norman F. Schneidewind, and John C. Munson, IV&V Issues in Achieving
High Reliability and Safety in Critical Control Software, Final Report, Jet Propulsion
Laboratory, National Aeronautics and Space Administration, Pasadena, California, January 19,
1998.

[13] Magnus C. Ohlsson and Claes Wohlin, "Identification of Green, Yellow, and Red Legacy
Components", Proceedings of the International Conference on Software Maintenance, November
16-20, 1998, Bethesda, Maryland, pp. 6-15.

[14] Niclas Ohlsson and Hans Alberg, "Predicting Fault-Prone Software Modules in Telephone
Switches", IEEE Transactions on Software Engineering, Vol. 22, No. 12, December 1996, pp.
886-894.

[15] Troy Pearse and Paul Oman, "Maintainability Measurements on Industrial Source Code
Maintenance Activities", Proceedings of the International Conference on Software Maintenance,
Opio (Nice), France, October 17-20, 1995, pp. 295-303.

[16] Shari Lawrence Pfleeger, “Assessing Project Risk”, Software Tech News, DoD Data
Analysis Center for Software, vol.2, no. 2, pp. 5-8.

[17] Thomas M. Pigoski and Lauren E. Nelson, "Software Maintenance Metrics: A Case
Study", Proceedings of the International Conference on Software Maintenance, Victoria, British
Columbia, Canada, September 19-23, 1994, pp. 392-401.

[18] Norman F. Schneidewind, "Software quality control and prediction model for maintenance",
Annals of Software Engineering, Baltzer Science Publishers, Volume 9 (2000), May 2000, pp.
79-101.

[19] Harry Sneed, "Modelling the Maintenance Process at Zurich Life Insurance", Proceedings
of the International Conference on Software Maintenance, Monterey, California, November 4-8,
1996, pp. 217-226.

 15

[20] George E. Stark, "Measurements for Managing Software Maintenance", Proceedings of
the International Conference on Software Maintenance, Monterey, California, November 4-8,
1996, pp. 152-161.

[21] Webster's New Universal Unabridged Dictionary, Second Edition, Simon and Shuster, New
York, 1979.

	1. Introduction
	2. Objectives
	3. Research Plan
	4. Related Research
	Table 5: Definition of Samples
	Size
	
	6. Results

	6. 1 Categorical Data Analysis
	Median Value
	Median Value
	Median Value
	
	Metric Value

